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Abstract. The interaction of two–level atoms with a common heat bath leads to an effective interaction
between the atoms, such that with time the internal degrees of the atoms become correlated or even
entangled. If part of the atoms remain unobserved this creates additional indirect decoherence for the
selected atoms, on top of the direct decoherence due to the interaction with the heat bath. I show that
indirect decoherence can drastically increase and even dominate the decoherence for sufficiently large times.
I investigate indirect decoherence through thermal black body radiation quantitatively for atoms trapped
at regular positions in an optical lattice as well as for atoms at random positions in a cold gas, and show how
indirect decoherence can be controlled or even suppressed through experimentally accessible parameters.

PACS. 03.65.Yz Decoherence; open systems; quantum statistical methods – 03.67.Lx Quantum compu-
tation – 42.50.-p Quantum optics

With the rise of quantum information processing it has
become necessary to understand decoherence in true
many–particle systems. It has been known for a long time
that the decoherence rate for a single degree of freedom
scales like a power of a certain distance between the com-
ponents of a superposition. The “distance” and its nat-
ural scale depend on the coupling to the heat bath. For
example, if the single degree of freedom couples through
a spatial coordinate x to the heat bath, the latter se-
lects eigenstates of x as “pointer-basis” [1], and the rele-
vant “distance” is measured in configuration space, with
a microscopic length scale such as the thermal de Broglie
length as natural unit. Decoherence therefore becomes
extremely fast for mesoscopic or even macroscopic dis-
tances, and this is considered one of the main reasons why
the everyday world around us behaves classically. Other
couplings lead to different power laws and different nat-
ural microscopic units [2]. Decoherence processes for sin-
gle degree of freedom systems are nowadays routinely re-
solved experimentally for microscopic distances between
the superposed components, and have been so far in good
agreement with the theoretical predictions [3–8]. However,
decoherence measurements on true many particle systems
are only now becoming available [9], and there is a need
for detailed theoretical predictions, in order to verify the
validity of quantum mechanics in an entirely new regime,
namely one where the joined states of many particles are
coherently superposed [10–12].
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Theoretical progress was achieved recently with the
derivation of a “decoherence metric” [13], which measures
the distance between the components of a quantum super-
position of arbitrarily many qubits with degenerate energy
levels, and determines directly the time dependent deco-
herence. It turned out that for sufficiently far separated
qubits with degenerate energy levels the time dependent
decoherence boils down to just single qubit decoherence
multiplied with the standard Hamming distance between
the superposed quantum code words. For smaller qubit
separations (the relevant length scale is the inverse of the
wave length of the UV cut-off of the bath modes), interfer-
ence effects start to play a role and one sees strong devia-
tions from the simple scaling with the standard Hamming
distance. Nevertheless, the notion of a distance (more pre-
cisely: a pseudo–metric, in the strict mathematical sense),
can be maintained through the introduction of a metric
tensor determined by the heat bath, whose off-diagonal
elements reflect the interference processes. As a conse-
quence, 22N−1 independent decoherences are governed by
only ∼N2 matrix elements of the metric tensor. The en-
tanglement of a state alone does not determine how fast
it decoheres: for example, a GHZ state (|000〉+ |111〉)/√2
has maximum Hamming distance between its two compo-
nents, but if the qubits are sufficiently close the decoher-
ence metric will distinguish this state for example from
the state (|001〉+ |110〉)/√2, or all other states which dif-
fer from GHZ by flipping qubits, whereas all theses states
have the same entanglement.

The metric tensor contains the contribution from the
direct decoherence process discussed so far, but also an
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“indirect decoherence”: the heat bath generates effective
interactions between the qubits which can lead to classical
correlations or even entanglement between them (“reser-
voir induced entanglement”, [14]). “Indirect decoherence”
is the additional decoherence that is induced if some of the
atoms which got correlated or entangled with the selected
atoms remain unobserved. In this paper, I investigate in-
direct decoherence in more detail, and show that even for
a rather small number of unobserved atoms (of the or-
der of 10), indirect decoherence can strongly enhance the
overall decoherence. The effect should be important if one
wants to build a quantum memory from trapped atoms
in an optical lattice and if additional atoms get trapped
in the optical lattice and are not read out. Indeed, until
recently [15] it was difficult to even control the number
of atoms per lattice site. The situation might be worse
for quantum information stored in macroscopic gas sam-
ples [7,16,17], where the total number of atoms in which
the information is stored can only be estimated and one
cannot control which individual atoms store the quantum
information.

Rydberg atoms have recently attracted particular at-
tention as carrier of quantum information [16–18] due to
the possibility of large dipole–dipole interactions, which
have been studied in detail experimentally [19]. At the
same time it is to be expected that strong interactions be-
tween the Rydberg atoms can also lead to strong indirect
decoherence, and thus to possible experimental verifica-
tion of the effect. We give numerical estimates of the time
scales involved in indirect decoherence for the example of
the dipole transition 46p3/2 → 45d5/2 in a gas of cold
Rydberg atoms studied in [19] and show that the effect
is within experimental reach. Future research will have to
determine if indirect decoherence also plays an essential
role in other situations, notably schemes where the domi-
nant coupling to the environment is not through the dipole
operator (see e.g. [20–22]), or where indirect decoherence
is much slower than the intrinsic time evolution of the
system without decoherence.

1 The model

Let us consider N two level atoms at arbitrary but fixed
positions Ri (i = 0, . . .N − 1) interacting with thermal
black body radiation, which forms a common heat bath.
All atoms are assumed identical with degenerate energy
eigenstates |−1〉 and |1〉, with σz |±1〉 = ±|±1〉. In dipole
coupling approximation, the total Hamiltonian reads [23]

H =
∑

k

�ωka†
kak + �

∑

k

N−1∑

i=0

g
(i)
k σxi

(
akeik·Ri

+ a†
ke−ik·Ri

)
, (1)

where σxi and σzi are Pauli matrices for atom i. The
index k stands for wave vector k and polarization di-
rection λ (kj = 2πnj/L with integer nj , j = x, y, z

for periodic boundary conditions); a†
k (ak) are the cre-

ation (annihilation) operators for mode k with frequency
ωk = c|k|, polarization vector εk, and electric field am-
plitude E =

√
�ωk/(2ε0V ), where ε0, c, and V are the

dielectric constant of the vacuum, speed of light, and the
quantization volume, respectively. The coupling constant
of atom i to mode k is denoted by g

(i)
k = −(edE/�)û(i) ·εk,

where û(i) stands for a unit vector in the direction of the
dipole moment of atom i, 〈−1|d|1〉 = edû(i) with electron
charge e and dipole length d. The restriction to atoms with
degenerate energy levels, Ω0 = 0, leads to a vanishing sys-
tem Hamiltonian, Hsys = (1/2)�Ω0

∑N−1
i=0 σzi = 0. The

model is a special case of the more general class of mod-
els known as pure dephasing models, where the system
Hamiltonian commutes with the interaction Hamiltonian,
i.e. the second term in (1). These models can be solved
exactly for an arbitrary number of atoms at arbitrary po-
sitions. It is important to note that the results presented
are robust in the sense that they remain unchanged for a
small but finite level spacing Ω0. The system Hamiltonian
is negligible if the fastest processes of the system itself are
much slower than the decoherence times we are interested
in [24]. We will see that such a regime appears for highly
excited Rydberg atoms.

2 Decoherence metric

We are interested in the decoherence process of the n se-
lected atoms (indices 0, . . . , n − 1) out of the N atoms.
We therefore have to first trace out the electro–magnetic
(e.m.) field modes, leaving a density matrix ρ, and sec-
ondly the unobserved atoms n . . .N − 1. The resulting
reduced density matrix ρ̃(t) of the remaining atoms will
be expressed in the eigenbasis of the σxi, σxi| ± 1〉x =
±| ± 1〉x, the natural basis (also called pointer basis) for
studying the decoherence process [1]. It has matrix ele-
ments ρ̃s̃s̃′(t) = trn...N−1ρss′(t), where s̃ and s̃′ are sub-
sets of length n of the labels s = (s0, s1, . . . sN−1) and
s′ = (s′0, s

′
1, . . . s

′
N−1) of the quantum states |s〉 and |s′〉

of all atoms, taken as column vectors, and si, s
′
i = ±1,

i = 0, 1, . . . , N − 1, refer to atom i. We assume that all
unobserved atoms are initially in the energy eigenstate
|1〉 = (|1〉x + |−1〉x)/

√
2, and that there are no initial cor-

relations between the unobserved atoms and the selected
atoms.

The dynamical quantities of interest are the “decoher-
ences” ds̃s̃′(t), which we define as normalized complements
of “coherences” (i.e. off-diagonal elements of the reduced
density matrix of the n selected atoms alone),

ds̃s̃′(t) ≡ 1 − |ρ̃s̃s̃′(t)|
|ρ̃s̃s̃′(0)| for ρ̃s̃s̃′(0) �= 0. (2)

In [13] it was shown that the behavior of the decoherences
is given by ds̃s̃′(t) � ||s̃ − s̃′||2M(t) with the “decoherence
metric”

||s̃ − s̃′||M(t) ≡ 1
2

√
(s̃ − s̃′)T M(t)(s̃ − s̃′), (3)
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where T denotes the transpose, and M(t) is a real, sym-
metric, and non–negative time dependent “decoherence
metric tensor” (DMT) with matrix elements (i, j =
0, . . . , n − 1, β = 1/kBT is the inverse temperature),

Mij(t) = 4fij(t,Ri − Rj) + 2Φij(t,Ri,Rj), (4)

fij(t,R) =
∑

k

g
(i)
k g

(j)
k

ω2
k

cos(k ·R)(1 − cosωkt)

× coth
β�ωk

2
(5)

ϕij(t,R) = 2
∑

k

g
(i)
k g

(j)
k

ω2
k

cos(k · R)(ωkt − sin ωkt)

(6)

Φij(t,Ri,Rj) =
N−1∑

k=n

ϕik(t,Ri − Rk)ϕjk(t,Rj − Rk).

(7)

The heat–bath itself therefore induces a natural distance
||s̃− s̃′||M(t) between the n–qubit states, which determines
directly the time dependent decoherences. The validity of
equation (3) is limited to |Mij(t)| 	 1 ∀i, j.

The distance ||s̃ − s̃′||M(t) generalizes the well–known
Hamming distance DH(s̃, s̃′), which is defined as the num-
ber of bits in which s̃ and s̃′ differ, and which is obtained
for M = I. This limit is reached for sufficiently large
separation of the qubits, and ds̃s̃′(t) then goes over into
DH(s̃, s̃′) up to a time dependent function describing sin-
gle qubit decoherence [13].

It is clear from the definition that M(t) is real and
symmetric. In Appendix A, I show that M(t) is also
non–negative and obeys the triangle inequality. However,
if a decoherence free subspace (DFS) [25–29] exists, the
decoherence metric is strictly speaking a pseudo–metric,
as there can be code words s̃ and s̃′ with s̃ �= s̃′ such that
||s̃− s̃′||M(t) = 0.

3 One selected atom

Indirect decoherence, i.e. the part Φij in equation (4) is
best appreciated for just n = 1 selected atom (taken to
have index i = 0), and N − 1 non–observed atoms. Only
one decoherence is then relevant, d1−1, and M has a single
matrix element, M00(t) = 4f00(t)+2Φ00(t). We express all
lengths in terms of the dipole length d, rij = |Ri −Rj|/d,
and times in units of d/c. We will furthermore assume
that all dipoles are oriented in the same direction û. The
angle between û and the vector ri − rj will be called θij ,
such that ϕij(t,Ri −Rj) becomes a function of t, rij , and
θij , and depends on i and j only through these variables,
ϕij(t,Ri − Rj) ≡ ϕ(t, rij , θij). As shown in [13], f00 is
given for T = 0 by

f00(t) =
2
3π

α

(
κ2

2
+

1 − cos(κt) − κt sin(κt)
t2

)
, (8)

where κ = kmaxd is a UV cut–off of the heat bath. A
necessary condition for the dipole-coupling approximation

is κ 	 1. Corrections to (8) due to finite temperature are
of order kBT/(�ωmax) with ωmax = ckmax, and will be
neglected in the following. Equation (8) implies that for a
finite UV–cutoff the direct decoherence will remain finite
for all times,

f00
t�1−→ ακ2

3π
. (9)

Such a behavior has been termed “incomplete decoher-
ence” [14]. The initial behavior is quadratic in t, f00 �
γ2t2 with γ =

√
α/(12π)κ2 for γt 	 1.

The function ϕ(t, r, θ) reads

ϕ(t, r, θ) =
2α

πr2

{
1
4
(1+3 cos(2θ))

(
Si((r+t)κ)−Si((r−t)κ)

)

+
3 sin2 θ − 2

2r

(
(r + t)Si((r + t)κ)

− (r − t)Si((r − t)κ) − 2tSi(κr)
)}

, (10)

where Si denotes the sin-integral. Rapidly oscillating
terms of the type sin(κr), cos(κr), and κr cos(κr) have
been neglected here, as their average in the case of a
small uncertainty in the atom positions is exponentially
small: atoms of mass M trapped in the ground states
of harmonic oscillators with trapping frequency ν have a
Gaussian distribution of their center of mass with a width
δr ∼ √

�/νM , leading to a suppression of these terms by
a factor exp(−(κδr)2/2). A typical experimental param-
eter, ν ∼ 30 kHz [30], leads to δrd ∼ 100 nm. Optical
dipole lengths d ∼Å and a UV cut-off kmax ∼ 1/10 Å give
κ ∼ 0.1, and κδr ∼ 100, so that these terms can indeed be
safely neglected. For a cold gas δr is expected to be even
larger.

In the limit of |r ± t|κ � 1, ϕij(t, r, θ) approaches

ϕ(t, r, θ) = α
t

r3
(3 cos2 θ − 1)Θ(t/r − 1), (11)

where Θ(t/r − 1) is the Heaviside function centered on
the light cone. We therefore recognize ϕ as a phase accu-
mulated due to an effective dipole interaction between the
atoms mediated through the modes of the electromagnetic
field. Note that in this limit indirect decoherence becomes
basically independent of the cut–off κ.

3.1 Optical lattices

In the following we consider specifically the situation for
a 2D square optical lattice with lattice constant a (taken
in units of the dipole length d as well), with the single
selected atom at the center of the lattice. The fact that
ϕ(t, r, θ) ∝ t leads to an unbound quadratic growth of
Φij(t,Ri,Rj) with t, Φij ∼ Nnn(αt/a3)2, where Nnn is
an effective number of nearest neighbors, weighed by the
inverse cube of their distance from the selected atom in
units of the lattice spacing. As ακ2 	 1 an immediate
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consequence of equations (11, 9) is that for large enough
times, t > t1 with

t1 ∼ κa3

√
3παNnn

, (12)

indirect decoherence always dominates over direct coher-
ence even for a small number of unobserved atoms close
to the selected atom. Due to the strong r-dependence
of (11), the nearest neighbors and next nearest neigh-
bors give the by far leading contributions to the indirect
decoherence. Indirect decoherence dominates immediately
(i.e. as soon as t � a � 1, where the quadratic behavior of
Φij ∼ Nnn(αt/a3)2 in t is valid) over direct decoherence,
if Nnn(αt/a3)2 � γ2t2, or a < ac with the critical spac-
ing ac ∼ (12παNnn)1/6/κ2/3. If the cut-off is of the order
�ωmax ∼ 1 eV and d = 1 Å, acd is of the order 100 nm.
If the cut-off is given by the break–down of the dipole ap-
proximation (kmax ∼ 2π/d), ac reduces to ac ∼ 1, i.e. the
atoms will have to become basically closely packed before
indirect decoherence immediately dominates over direct
decoherence.

One might object that a small number of two–level
atoms with which the selected atoms effectively interact
cannot constitute a real heat-bath, and should rather lead
to repeating revival phenomena of the coherences instead
of to decoherence. However, it turns out that even for
a square optical lattice of 3 × 3 atoms (i.e. 8 unobserved
atoms), the revivals are hardly visible, and in a square op-
tical lattice of 31×31 atoms all revivals seem to have disap-
peared completely. This is shown in Figure 1 where we see
the decoherence as function of time for a 2D square opti-
cal lattice with lattice constant a = 1000, dipole moments
perpendicular to the plane of the lattice, and with the se-
lected atom in the center of the lattice. Direct decoherence
sets in immediately and increases ∝ t2 for small times (see
Eq. (8)), before saturating at ακ2/(3π). Due to the weak-
ness of the dipole coupling, indirect decoherence becomes
appreciable only at much later times for atoms separated
thus far. But because of the continued quadratic growth
of the indirect decoherence it finally destroys all coherence
left by the direct decoherence. The figure also shows that
the exact result for d1−1 [13] is very well approximated
in the entire interesting regime d1−1 ≤ 1 by the decoher-
ence metric prediction, equation (3). Indirect decoherence
has an interesting dependence on the orientation of the
dipoles. Equation (11) shows that Φ00 ∝ (3 cos2 θ − 1)2.
Indirect decoherence in a 2D optical lattice can therefore
be completely suppressed by orienting the atomic dipoles
at the magical angle θ = arccos(1/

√
3) � 54.7◦ with re-

spect to the lattice. This angular dependence might serve
as additional experimental signature of the effect.

Let us consider as specific physical example highly
excited Rydberg atoms. In [19] the transition 46p3/2 →
45d5/2 in Rydberg atoms was studied experimentally.
These two levels have an allowed dipole transition
with d ∼ 2600 in atomic units, and a level spacing
Ω0 ∼ 10 GHz. If we consider a lattice constant a ∼ 10 (in
units of d, corresponding to about 1 µm, roughly a factor
100 smaller than the average spacing in the cold gas con-
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Fig. 1. (Color online) The decoherence d1−1(t) for a single
selected atom in the center of a 2D square optical lattice of
31 × 31 atoms with lattice constant a = 1000 (in units of the
dipole length) as a function of the dimensionless time t for
κ = 0.01 (black circles), κ = 0.1 (blue squares), and κ = 1 (red
diamonds) along with the decoherence metric predictions (con-
tinuous lines). The first rise corresponds to the contribution of
direct decoherence due to the interaction with the e.m. modes,
the second rise results from indirect decoherence due to the
effective interaction with the non-selected atoms mediated by
the e.m. modes. Superpositions are decohered completely when
d1−1 = 1 is reached.

sidered in [19]), indirect decoherence arises on the time
scale τdec ∼ (1/

√
Nnn)a3/α, which scales like 1/d2, and

gives a numerical value of a fraction of 10−10 s, i.e. shorter
than the inverse level spacing. Going to even higher lev-
els or higher densities leads to even stronger separation of
the two time scales, as the dipole matrix element roughly
increases like n2 with the main quantum number n, and
the level spacing decays as 1/n3. Thus, for such highly
excited and relatively densely packed Rydberg atoms, the
model can be applied, and predicts indirect decoherence
on a sub-ns time scale, faster than the intrinsic time evo-
lution of single Rydberg atom put into superposition of
the two states 46p3/2 and 45d5/2.

3.2 Cold gases

For an atomic gas, the positions Rj of the atoms are not
known. We resort to an ensemble description, where we
average over the positions of the atoms. We assume that
all Rj with the exception of R0 = 0 are randomly, inde-
pendently and evenly distributed with an average density
(atoms per volume) ρV . We find

〈Φ00(t,0,0)〉 =

〈
N−1∑

k=1

ϕ2
0k(t,Rk)

〉

= 2πρV d3

∫

l

dr r2

∫ π

0

dϑ sin ϑ(αt/r3)2

× (3 cos2 ϑ − 1)2Θ(t/r − 1). (13)
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The lower cut-off is now given by the smallest distance up
to which two atoms might approach each other, which for
a sufficiently dilute gas at low temperature is of the order
of the scattering length l (taken in units of d as well), if
l > 0. This gives

〈Φ00(t, 0, 0)〉 � γ2
Gt2 with γG = α

√
16πd3ρV

15l3
. (14)

Indirect decoherence immediately dominates over direct
decoherence for densities ρV � κ4l3/d3. A UV cut-off
�ωmax = 1 eV, d = 1 Å, l = 10 Å gives a critical
density of about 1020 atoms/m3. Recent experiments on
dense Bose-Einstein condensates deal already with simi-
lar densities [31]. The coherence of internal (spin) degrees
of freedom of condensed bosons has recently been demon-
strated [32], so that indirect decoherence in a cold gas
might become observable in the near future. For smaller
densities indirect decoherence takes over for t > t2 with

t2 ∼ κ

√
l3

ρV d3
. (15)

The dependence of the indirect decoherence on l gives the
interesting perspective to control indirect decoherence in
a cold gas through a Feshbach resonance, which allows to
vary l over many orders of magnitude [33].

4 Conclusions

I have shown that indirect decoherence due to reservoir in-
duced entanglement between degenerate two–level atoms
can substantially increase decoherence in an optical lat-
tice or a cold atomic gas, compared to the direct decoher-
ence due to the coupling of each atom to the e.m. field.
For large enough times indirect decoherence in fact always
dominates, even for only a few unobserved atoms. For suf-
ficiently densely packed atoms the dominance of indirect
decoherence begins as soon as a light signal has traveled
a dipole length. The dependence of the indirect decoher-
ence on the orientation of and the distance between the
dipoles offers the interesting perspective to control indi-
rect decoherence with easily accessible parameters. In a
2D optical lattice, indirect decoherence can be switched
off completely by orienting all dipoles under a magical an-
gle θ = arccos(1/

√
3) with respect to the lattice, and in a

dilute, cold atomic gas, one can suppress indirect decoher-
ence to large extent by increasing the scattering length l
through a Feshbach resonance. The effect presented here
should be observable experimentally with highly excited
Rydberg atoms.

I wish to thank Olivier Giraud for useful discussions. This
work was supported in part by the Agence National de la
Recherche (ANR), project INFOSYSQQ, and EC IST-FET
projects EDIQIP and EuroSQIP.

Appendix A: Proof of non–negativity
and of the triangle inequality
for the decoherence metric

A.1 Non–negativity

We show separately
∑

i xifijxj ≥ 0 and
∑

i xiΦijxj ≥ 0
∀xi ∈ R. From equations (5, 6) we have

∑

i,j

xifijxj =
∑

i,j

∑

k

xixjg
(i)
k g

(j)
k eik·(Ri−Rj)

1 − cosωkt

ω2
k

× coth
β�ωk

2

=
∑

k

∣∣∣∣∣
∑

i

xig
(i)
k eik·Ri

∣∣∣∣∣

2
1 − cosωkt

ω2
k

× coth
β�ωk

2
≥ 0

∑

i,j

xiΦijxj =
∑

i,j

∑

l

xiϕilϕjlxj =
∑

l

(
∑

i

xiϕil

)2

≥ 0.

Thus, also
∑

i,j xiMijxj ≥ 0, and M is therefore non–
negative.

A.2 Triangle inequality

We define the linear map φ: R
n → R

n, v → Mv,
where M is a real symmetric, non–negative n× n matrix,
i.e. vT Mv ≥ 0 for all v ∈ R

n. We also define the bi-
linear form (·, ·): R

n × R
n → R, (v,w) = vT Mw, which

is not a scalar product, as (v,v) can be zero for v �= 0.
One can nevertheless prove the Cauchy—Schwartz (C.S.)
inequality (v,w)2 ≤ (v,v)(w,w).

Let V0 be the kernel of φ. Thus Mv = 0 = vT M ∀v ∈
V0. Suppose first that v ∈ V0 or w ∈ V0. Then (v,w) = 0,
but also (v,v)(w,w) = 0, as at least one factor is zero.
Thus the C.S. inequality is trivially fulfilled. Now suppose
that v /∈ V0 and w /∈ V0. Define ṽ = (w,w)v − (w,v)w.
We have

0 ≤ (ṽ, ṽ) = (w,w)[(w,w)(v,v) − (w,v)2]. (16)

It is easily seen that (w,w) �= 0 if w /∈ V0: decompose
M = M0+M+ with M0 = P0MP0, M+ = (1−P0)M(1−
P0), where P0 is the projector onto V0. M+ is the positive
part of the map, i.e. wT M+w > 0 ∀w �= 0. Thus, from
(w,w) = 0 follows w = 0 or M+ = 0. In both cases
w ∈ V0. Thus, for w /∈ V0 we have (w,w) �= 0, and as
M ≥ 0, this means (w,w) > 0. Therefore equation (16)
immediately gives the C.S. inequality.

The proof of the triangle inequality ||s̃− s̃′′||M ≤ ||s̃−
s̃′||M + ||s̃′− s̃′′||M then proceeds in the usual fashion. One
defines the norm ||x||M =

√
(x,x), and the C.S. inequality

gives ||x+y||2M = (x,x)+(y,y)+2(x,y) ≤ (x,x)+(y,y)+
2|(x,y)| ≤ ||x||2M + ||y||2M + 2||x||M ||y||M = (||x||M +
||y||M )2. The triangle inequality for the distance (3) fol-
lows from here by setting x = s̃ − s̃′, y = s̃′ − s̃′′.
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